Estimation and Tests for Models Satisfying Linear Constraints with Unknown Parameter
نویسنده
چکیده
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood (GEL). We treat the problems of existence and characterization of the divergence projections of probability measures on sets of signed finite measures. Our approach allows for a study of the estimates under misspecification. The asymptotic behavior of the proposed estimates are studied using the dual representation of the divergences and the explicit forms of the divergence projections. We discuss the problem of the choice of the divergence under various respects. Also we handle efficiency and robustness properties of minimum divergence estimates. A simulation study shows that the Hellinger divergence enjoys good efficiency and robustness properties.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملOptimization with few violated constraints for linear bounded error parameter estimation
In the context of linear constrained optimization, we study in this paper the problem of finding an optimal solution satisfying all but of the given constraints. A solution is obtained by means of an algorithm of the complexitymin ( ) ( ) , where is the dimension of the problem. We then use these results to solve the problem of robust identification in the presence of outliers in the setting of...
متن کاملDivergences and Duality for Estimation and Test under Moment Condition Models
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood approach. We treat the problems of existence and characterization of the divergence projections of probability distributions on set...
متن کاملPhase II monitoring of multivariate simple linear profiles with estimated parameters
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...
متن کامل